Bearing Surface Design in Total Knee Replacement

Author:

Walker Peter S1

Affiliation:

1. Orthopedic Biomechanics Laboratory, Brigham and Women's Hospital, Boston, USA. (Now at the Institute of Orthopaedics, Royal National Orthopaedic Hospital, Stanmore, UK.

Abstract

Surfaces for condylar total knee replacement are designed using computergraphics techniques. An average anatomical femoral surface is represented mathematically. Mathematical equations are written to describe normal knee motion and normal laxity. Tibial surfaces are generated by placing the femur stepwise in multiple sequential positions, through a defined three-dimensional motion or laxity path. In addition, a flat tibial surface is defined, to represent the least amount of femoral-tibial conformity in currently-used knee replacements. Elasticity theory is used to calculate the maximum contact stresses at the femoral-tibial contact points. The least stresses are produced with a fixed axis cylindrical motion, while the highest are with a flat tibial surface. A surface based on laxity produces lower stresses than for normal knee motion, and is thought to be acceptable in terms of both freedom of motion and stability. Such a laxity surface is proposed as being suitable for total knee design.

Publisher

SAGE Publications

Subject

General Medicine

Reference21 articles.

1. The influence of total knee-replacement design on walking and stair-climbing.

2. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement.

3. Unicondylar knee arthroplasty

4. Metal to Plastic Total Knee Replacement

5. Grood E. S., Hefzy M. S., Butler D. L., Suntay W. J., Siegel M. G., Noyes F. R. (1983) On the placement and the initial tension of anterior cruciate ligament substitutes, Proc. Orthop. Res. Soc., Anaheim, CA, (March), 92.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3