Fabrication of hot-pressed ZrC-based composites

Author:

Ma B1,Zhang X1,Han J1,Han W1

Affiliation:

1. Center for Composite Materials, Harbin Institute of Technology, Harbin, People's Republic of China

Abstract

In this work, ZrC-based composites reinforced with SiC particles were processed using the hot-pressing route. The influence of SiC content on the microstructure and mechanical properties of the hot-pressed composites was investigated. In all composites with different SiC contents, the highest relative density was obtained for ZrC-based composite containing 20 vol% SiC, having a value of 97 per cent. The flexural strength of ZrC-based composites increased modestly from 390 to 452 MPa as the SiC content increased from 10 to 20 vol%. The increase in strength was attributed to a decrease in grain size and improvement of the relative density. But the strength did not show great variation when the content of the SiC particles increased to 30 vol%, which may be because of the inhomogeneous microstructure and the low relative density. In contrast, toughness and hardness did not vary significantly with SiC content.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3