Quantification and Prediction of Pilot Workload in the Helicopter/Ship Dynamic Interface

Author:

Bradley R1,Macdonald C A1,Buggy T W1

Affiliation:

1. School of Computing and Mathematical Sciences, Glasgow Caledonian University, Glasgow, UK

Abstract

The evaluation, early in the design cycle, of the limits for operating aircraft from ships in a wide range of sea states and atmospheric conditions has become an important issue for two main reasons. First, the simultaneous entry into service of new helicopter types and new naval platforms has generated an enormous task in the development of appropriate Ship Helicopter Operating Limits for in-service operations. Second, it has become clear that such operational factors need to be addressed at the design stage - which of necessity involves developing a predictive capacity in all of the areas which influence operational capability. These considerations need to take place in the context of technological advances which seek to assist the pilot in operations from ships. Improved radar for ship approaches and enhanced cueing, located around hangars and landing spots, are both areas which are being continually developed in association with upgraded aircraft systems for guidance, control, and stability augmentation. Ultimately, however, the situation comes down to the pilot's assessment of the workload involved in any task and the handling qualities of the vehicle being controlled. For this reason there has been a growing interest in two related areas: (i) the development of metrics to provide a consistent indicator of pilot workload and (ii) the enhancement of existing pilot models to generate authentic control activity in the aircraft/ship dynamic interface. This article describes recent techniques for extracting workload metrics from control activity and indicates the extent to which acceptably accurate workload predictions can be made. Some advances in pilot modelling are also described and examples are given to demonstrate the capability and limitations of currently available methods. Finally, the present state of integration of the two aspects into a robust tool for ship and aircraft system design is discussed. The focus of this article is, of necessity, on helicopter operations because that is where most of the current work has been centred.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Population Genetic Backpropagation Neural Network Approach for Perceived Workload Evaluation of Pilots;2023 11th International Conference on Information Systems and Computing Technology (ISCTech);2023-07-30

2. Modeling and Simulation of Ship–Helicopter Dynamic Interface: Method and Application;Archives of Computational Methods in Engineering;2022-09-04

3. Structure of a Ship Airwake at Multiple Scales;AIAA Journal;2020-05

4. Energy harvesting with piezoelectric circular membrane under pressure loading;Smart Materials and Structures;2014-02-20

5. Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes;Smart Materials and Structures;2011-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3