Experimental and computational investigation of an ‘open’ transonic cavity flow

Author:

Atvars K1,Knowles K1,Ritchie S A1,Lawson N J2

Affiliation:

1. Aeromechanical Systems Group, Cranfield University, Shrivenham, UK

2. National Flying Laboratory Centre, Cranfield University, Bedfordshire, UK

Abstract

This paper presents an investigation of a transonic flow ( M=0.85) over a rectangular cavity having a length-to-depth ratio of 5. Velocities were measured inside the cavity on the central plane and two off-centre planes using a two-component particle image velocimetry system. These measurements were supported by surface flow visualization, and mean and time-varying surface pressure measurements. The flow was also simulated using an unsteady Reynolds-averaged Navier—Stokes code, with a realizable k — ε turbulence model. It is shown that this CFD model does not capture all the characteristics of the flowfield correctly. However, by using this integrated experimental and computational approach we have been able to identify three-dimensional flowfield structures within the cavity. The influence of the thickness of the approaching boundary layer is discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3