Modelling, simulation, and experimental evaluation of a crossflow heat exchanger for an aircraft environmental control system

Author:

Shah S1,Liu G1,Greatrix D R1

Affiliation:

1. Department of Aerospace Engineering, Ryerson University, Toronto, Ontario, Canada

Abstract

Crossflow heat exchangers play a significant role in the operation of an aircraft's environmental control system (ECS). The bleed air supplied by an aircraft engine, at high pressure and high temperature, requires regulation and control in order to be used for various pneumatic services. In the present investigation, the transient temperature response of crossflow plate-and-fin ECS heat exchangers, having a large core capacity with both fluids unmixed, is investigated numerically and experimentally for perturbations experienced in temperature. A non-linear lumped model of crossflow heat exchangers with a state-space solution valid for equal fluid velocities is derived and evaluated, in terms of fluid placement and number of lumps (sections) required. Dependency of the heat transfer coefficient on flowrates is incorporated in the dynamic modelling of the heat exchanger. Two models are derived, and the variation of the mean exit temperatures of both fluids with time is compared for the two alternative models, with consideration of the number of transfer units and heat capacitance rate ratios. One model requires axial lumping of the primary surface alone, as done in most of the existing models, and the second involves incorporating the effect of secondary surfaces (fins) on the heat exchanger transient performance. To quantify the importance of modelling the fins, a comparison of both simulation models with experimentally obtained data from a physical model is presented. By including fins and complex non-linearities in modelling of the ECS heat exchangers, a precise representation of the heat exchanger dynamics and accurate temperature responses are predicted. The model developments reported in this article can lead to improved aircraft ECS design and optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance simulation and diagnosis of faulty states in air-cycle refrigeration systems in civil aircrafts;International Journal of Refrigeration;2023-12

2. Dynamic simulation model for three-wheel air-cycle refrigeration systems in civil aircrafts;International Journal of Refrigeration;2023-01

3. Inference of faults through symbolic regression of system data;Computers & Chemical Engineering;2022-01

4. Dynamic modeling of a cabin pressure control system;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-08-09

5. Analysis of transient data in test designs for active fault detection and identification;Computers & Chemical Engineering;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3