Model for shock interaction with sharp area reduction

Author:

Falcovitz J1,Igra O2

Affiliation:

1. Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

2. Department of Mechanical Engineering, the Pearlstone Center for Aeronautical Engineering Studies, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract

The interaction of a planar shock wave, propagating in a conduit of constant cross-section with a sharp area change, is modelled analytically. The area ratio between the wide (incident) conduit and the narrow (continuing) conduit is taken to be very large. Previously published studies for shock interaction with an area change assumed a short smooth connecting nozzle, where, most often, steady flow evolves. It is assumed that the flow converges through the sharp area transition via a smoothly-formed quasi-one-dimensional streamtube, reaching sonic (choked) or subsonic (unchoked) velocity. In the choked case, a centred rarefaction wave is required to match pressures between the sonic flow and the transmitted shock state. The model leads to a pair of equations for velocity and pressure at a contact discontinuity, analogous to the wave interaction curves that resolve a Riemann problem. It is found that the overpressure amplification ratio of the transmitted shock is in the range of 1.5—2.0 for very strong to very weak incident shocks, respectively. A good agreement is obtained between the model predictions and two-dimensional generalized Riemann problem (GRP) simulations. The model is also applicable to a configuration where a smooth (and short) nozzle replaces the sharp area transition. The numerical simulations then produce an amplification factor A t, somewhat higher than the corresponding sharp area value. This is taken to mean that the virtual streamtube formed in the sharp area reduction case has a throat (sonic) cross-section area lower than the actual area of the narrow tube.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. My Walk in the Field of Shock Waves;Frontiers of Shock Wave Research;2022

2. Modelling gas dynamics in 1D ducts with abrupt area change;Shock Waves;2011-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3