Non-linear aeroelastic investigations of store(s)-induced limit cycle oscillations

Author:

Abbas L K1,Chen Q1,Marzocca P2,Milanese A2

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People's Republic of China

2. Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York, USA

Abstract

In the current work, the study of the aeroelastic behaviour of a wing with external store(s), such as a missile or drop fuel tank, is presented. The aeroelastic governing equations derived for a cantilever wing with coupled bending and torsion modes account for structural and aerodynamic non-linearities. Coupling terms retained in the aeroelastic governing equations are due to: (a) the non-linear beam theory, (b) the aerodynamic non-linearities of a quasi-steady model with stall, and (c) the non-linear kinematics terms of the store(s). As presented in the paper, this aircraft configuration can induce pathologies, such as store(s)-induced limit cycle oscillations (or si-LCOs), very different from the one of a clean wing configuration, and from the one obtained from the linearized form of the aeroelastic governing equations. Time domain simulation, phase portrait, and bifurcation analyses are performed for various velocities, initial conditions, and store(s)-sensitive parameters — such as store mass, number, location along the wing — to examine the dynamic aeroelastic instabilities of the system (e.g. the onset of flutter and LCO). Numerical studies indicate the presence of regions of subcritical Hopf-bifurcation, corresponding to an unstable LCO, for velocities below the linear flutter velocity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3