Steady and unsteady multiblock hovering rotor simulations

Author:

Allen C B1

Affiliation:

1. University of Bristol Department of Aerospace Engineering Bristol BS8 1TR, UK

Abstract

A multiblock upwind Euler solver is presented and applied to multibladed lifting hovering rotor flow. Hovering rotor flows can be simulated as a steady case in a blade-fixed rotating coordinate system. Furthermore, periodic boundary conditions mean that only part of the domain need be considered, and so a single-block structured grid can be used. However, forward flight simulation will always require an unsteady solution, and the complete rotor disc must be considered, so a multiblock grid is preferable, for a structured grid solution, particularly to represent complex blades or hubs. Hence, as a stepping stone in the development of a forward flight simulation tool, both explicit steady and implicit unsteady simulations of the same hovering case are presented using a multiblock grid. Convergence of the two approaches is examined and compared, in terms of residual history, cost and solution evolution, as a means of both validating the unsteady formulation and considering implications for forward flight simulation. Consideration of the solution evolution and wake capturing shows that, for hovering rotor cases, the unsteady and steady solutions are the same, but the unsteady solution is more expensive in terms of CPU time. It is also shown that, for hover, the fewer real time steps taken per revolution, the more efficient the implicit scheme will be.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3