The effect of laminate lay-up on the flutter speed of composite wings

Author:

Guo S J1,Bannerjee J R2,Cheung C W2

Affiliation:

1. University of Hertfordshire Department of Aerospace, Automobile and Design Engineering Hatfield, Hertfordshire, UK

2. City University School of Engineering and Mathematical Science London, UK

Abstract

This paper presents an analytical study on optimization of a laminated composite wing structure for achieving a maximum flutter speed and a minimum weight without strength penalty. The investigation is carried out within the range of incompressible airflow and subsonic speed. In the first stage of the optimization, attention has been paid mainly to the effect on flutter speed of the bending, torsion and, more importantly, the bending-torsional coupling rigidity, which is usually associated with asymmetric laminate lay-up. The study has shown that the torsional rigidity plays a dominant role, while the coupling rigidity has also quite a significant effect on the flutter speed. In the second stage of the optimization, attention has been paid to the weight and laminate strength of the wing structure, which is affected by the variation in laminate lay-up in the first stage. Results from a thin-walled wing box made of laminated composite material show that up to 18 per cent increase in flutter speed and 13 per cent reduction in weight can be achieved without compromising the strength. The investigation has shown that a careful choice of initial lay-up and design variables leads to a desirable bending, torsional and coupling rigidities, with the provision of an efficient approach when achieving a maximum flutter speed with a minimum mass of a composite wing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference22 articles.

1. An investigation of piloting strategies for engine failures during takeoff from offshore platforms;J. Banerjee;Computers Structs,1992

2. An investigation of piloting strategies for engine failures during takeoff from offshore platforms;J. Banerjee;J. Aircr.,1995

3. An investigation of piloting strategies for engine failures during takeoff from offshore platforms;W. Wittrick;Q. J. Mechanics Appl. Math.,1971

4. Davies, D. E. Theoretical determination of subsonic oscillatory airforce coefficients. ARC R and M 3804, May 1976.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3