Numerical modelling of oblique shock and detonation waves induced in a wedged channel

Author:

Fan H Y1,Lu F K1

Affiliation:

1. Aerodynamics Research Centre, Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas, USA

Abstract

A computational study of wedge-induced oblique shock and detonation wave phenomena in the flow of a combustible mixture over a wedged channel is presented with the purpose of understanding the fundamental gasdynamics of the waves and their interactions. A two-dimensional, time accurate, finite-volume-based method was used to perform the computations, and a five-species, two-step chemical reaction is assumed for a stoichiometric hydrogen—air mixture. The combustion channel is made of a wedged section followed by a constant area section. The simulation was performed with wedges of up to 20° semi-angle and Mach numbers from 1.25 to 6, with other inflow parameters fixed. Within the computational domain either propagating or standing shock and detonation wave configurations were obtained depending on the flow Mach number and the wedge semi-angle. Four flow modes, namely, a propagating detonation wave, a standing detonation wave, a propagating shock wave, and a standing shock wave mode were identified. The two detonation-based modes were emphasized. Detonation initiation, propagation, and the induced wave interactions of these modes were investigated. The shock-based modes were also studied briefly. Phenomena explored included overall wave structures, detonation initiation arising from shock coalescence, location of initiation, and double detonation initiation. The physical mechanisms of these phenomena were analysed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3