Helicopter flight around a ship's' superstructure

Author:

Wakefield N H1,Newman S J2,Wilson P A3

Affiliation:

1. School of Engineering Sciences, University of Southampton Southampton, UK

2. School of Engineering Sciences, University of Southampton Department of Aeronautics and Astronautics Southampton, UK

3. Ship Science, School of Engineering Sciences, University of Southampton Southampton, UK

Abstract

A computational fluid dynamics model of a hovering helicopter main rotor is developed to examine air flow in the presence of ship structures and side winds. An illustration of the problem is given. The rotor is modelled by modifying the governing Navier-Stokes equations in the region of the disc. The extra terms added to the governing equations apply a downward force to the fluid; these forces are independent of the flow around the rotor and are equal to the helicopter weight. The helicopter rotor model and the ship model are combined to yield one flow solution, which, due to the severe non-linearities of the problem, cannot be achieved by superposition. The resultant flow yields valuable data about the induced velocities at the rotor, which ultimately determine the control pitch and power required to maintain the hover in a given location. Indeed, the interactions between the rotor downwash and ship air flow are known to produce unexpected and adverse flight dynamic behaviour of the aircraft.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3