Affiliation:
1. Department of Aeronautics, United States
Air Force Academy, Colorado Springs, Colorado, USA
Abstract
Traditionally, computational predictions and experimental evaluations of aerodynamic concepts have been conducted separately, with little collaboration other than post priori comparisons of results. This has led to distrust and even antagonism between the computational and the experimental communities. These difficulties probably began when early computational fluid dynamic practitioners boasted that wind tunnels would become secondary in aerodynamic concept development within a few short years, a prediction that has not come true. On the contrary, it is believed that a great deal of synergy can be cultivated when computational and experimental evaluations are conducted in an integrative fashion. A variety of projects where this has been done will be reviewed, including a pitching Unmanned Combat Air Vehicle, a delta wing with periodic suction and blowing for aerodynamic control, a missile with drag brakes that caused excessive unsteady flow, a C-130 aircraft configured for airdrop, and closed-loop flow control. Further evolution of the numerical/experimental collaboration will be discussed showing results from the flow control research where the dividing line between numerical predictions and experimental evaluations is becoming blurred. Suggestions for future directions in collaboration will also be made.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Aeronautics and astronautics: Recent progress and future trends;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2009-12-01
2. Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle;Aerospace Science and Technology;2008-07