Extreme-value-model-based risk assessment for nuclear reactors

Author:

Scarrott C J1,MacDonald A1

Affiliation:

1. Mathematics and Statistics Department, University of Canterbury, Canterbury, New Zealand

Abstract

The safety case for continuing operation of nuclear reactors requires reliable assessment of the likelihood of the coolant temperatures exiting the fuel channels exceeding certain critical levels. Temperature measurements are typically made at a fixed sample of fuel channels and used for reactor control. No sample measurements will exceed the predetermined control limit, whereas it is likely that some of the unobserved temperatures will exceed this limit. The challenge is to use the control measurements reliably to assess the risk of the critical temperature exceedance over all channels, while also accounting for the uncertainties in the risk estimation. A novel non-stationary extreme value mixture modelling technique is developed to provide rigorous extrapolation of the risk past the observed range of the sample data. The proposed technique builds upon previous deterministic and statistical approaches, while providing more accurate risk predictions with fuller account for uncertainties in the estimation. A spatial random effects model is used to capture the non-stationary spatial structure in the temperature variation across the reactor. Bayesian inference for the extreme value mixture model parameters is undertaken, which permits assessment of all sources of uncertainty including potential inclusion of expert prior information.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BEPU robustness analysis via perturbed law-based sensitivity indices;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2021-07-28

2. Evolving extreme events caused by climate change: A tail based Bayesian approach for extreme event risk analysis;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2021-02-05

3. Assessing the Impact of Typhoons on Rice Production in the Philippines;Journal of Applied Meteorology and Climatology;2016-04

4. Methods and models in process safety and risk management: Past, present and future;Process Safety and Environmental Protection;2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3