Transmission Line Modelling of Simulated Drill Strings Undergoing Water-Hammer

Author:

Beck S M1,Haider H1,Boucher R F1

Affiliation:

1. Department of Mechanical and Processing Engineering, The University of Sheffield

Abstract

Drill strings and oil production lines are examples of fluid systems for which time-dependent (dynamic) as well as steady state (static) analysis is increasingly needed. These systems are difficult and expensive to instrument and test experimentally. Developments of fluidic non-moving-part controllers to produce water-hammer pulsations stimulated a need to simulate the fluid dynamics of such drill strings to aid the design work. The method of simulation chosen was transmission line modelling (TLM). It is essentially a time-delay method, borrowing its main concepts and the fundamentals of its computational solution scheme from early work by others in the field of electrical power lines. In its elementary form, a fluid network is treated as a set of pipes (or pipe segments) where waves travel with pure time delay. Connecting the pipes are junctions of various types at which the waves are scattered (transmitted, reflected and/or attenuated). The merits and limitations expected with this methodology in comparison with the method of characteristics (MOC) and other wave-analysis methods are discussed. The first adaptations of TLM were for small perturbation analysis. The presentation here takes such work further forward to model large-scale waves in pipe networks of almost arbitrarily complex topology. The basic theory behind the method is presented and the solution schemes are formulated mathematically with comments on the type of data structure and algorithms needed to undertake computationally such solutions. With the aid of modules described elsewhere, providing comprehensive steady state modelling capability, the software provides a powerful tool for implementing static and dynamic TLM simulations of networks. One of the novel aspects of considerable benefit is the ease of implementation of time-varying junctions capable of representing the overall action of control elements such as the fluidic controllers mentioned earlier. A large experimental laboratory facility with a simple circuit containing the essential hydrodynamics of drill strings was used to gather data on water-hammer pulsations. A controlled solenoid valve with a high-resistance bypass acted as an alternating high and low resistance in the main pipe loop. A simplified version of the circuit was simulated with TLM to compare and discuss the results. The TLM time-domain results took a few seconds of computer processing time and revealed the basic features of the circuit dynamics quantifying water-hammer to a fair and useful accuracy. Such results were encouraging and confirmed the power of this computational method as an aid in the design process.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference9 articles.

1. Boucher R. F., Haider M. H. S. Fluidic percussion drilling in oil exploration. Research Event, Cambridge, 1991, p. 335 (Institution of Chemical Engineers, London).

2. Transmission Line Modelling of a Hydraulic Position Control System

3. A Computational Method Applicable to Microwave Networks

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3