On the Distance Required to Atomize Diesel Sprays Injected from Orifice-Type Nozzles

Author:

Yule A J1,Salters D G1

Affiliation:

1. Department of Mechanical Engineering, University of Manchester Institute of Science and Technology

Abstract

Conductivity probe measurements, using ranges of nozzles, liquid properties and gas densities, have revealed more extensive and reliable information on the break-up process of diesel sprays than has been published to date. The spray generated from a single-hole orifice-type nozzle has an incompletely atomized break-up length which typically extends at least 100 hole diameters downstream. The physical structure of this break-up zone varies, depending on the liquid properties and both initial and boundary conditions, from that of a central liquid column, with outer drops and ligaments, to, more typically, that of a chaotic ‘wire wool’ structure of ligaments and drops. Time variations of the break-up length are found during spray pulses and concentrations of poorly atomized liquid are convected downstream in the form of coherent structures. The existence of this zone has repercussions with respect to spray-gas flow interaction, fuel vaporization and wall wetting in internal combustion engines.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical study on turbulent dispersion of diesel sprays under ultrahigh injection pressure using large eddy simulation;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2020-09-22

2. PREDICTING THE PERFORMANCE OF PRESSURE-SWIRL ATOMIZERS;Atomization and Sprays;2018

3. Mechanistic Model for the Breakup Length in Jet Atomization;SAE International Journal of Engines;2016-03-14

4. STUDY OF AMBIENT TURBULENCE EFFECTS ON DIESEL SPRAYS IN A FAN-STIRRED VESSEL;Atomization and Sprays;2006

5. The Effect of Boundary Conditions on the Downstream Penetration of Pulsed Sprays After Impaction on a Flat Surface;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;1996-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3