Numerical Analysis of Fully Penetrated Weld Pools in Gas Tungsten Arc Welding

Author:

Zhang Y M1,Cao Z N1,Kovacevic R1

Affiliation:

1. Center for Robotics and Manufacturing Systems, University of Kentucky, Lexington, Kentucky, USA

Abstract

Full penetration welding is widely used in metal joining, but it has been ignored in previous convective numerical models. In addition to the free surface on top of the pool, an additional free surface appears on the bottom of the workpiece. It can be shown that the top surface, temperature distribution and fluid flow field in the weld pool are all coupled with the pool's bottom surface. This complicates the numerical process and therefore no convective models have previously been developed for fully penetrated weld pools. In order to improve the numerical solution for the fully penetrated weld pool, a three-dimensional model is proposed. Free top and bottom pool surfaces have been included. The electromagnetic force, buoyancy force and surface tension gradient (Marangoni) are the three driving forces for weld pool convection. Welding parameters are changed in order to analyse their effects on weld pool geometry. It is found that the depression of the top surface contains abundant information about the full penetration state as specified by the back-side bead width.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3