Moderated Reinforcement Learning of Active and Semi-Active Vehicle Suspension Control Laws

Author:

Frost G P1,Gordon T J1,Howell M N1,Wu Q H1

Affiliation:

1. Department of Aeronautical and Automotive Engineering and Transport Studies, Loughborough University, Leicestershire

Abstract

This paper is concerned with the application of reinforcement learning to the dynamic ride control of an active vehicle suspension system. The study makes key extensions to earlier simulation work to enable on-line implementation of the learning automaton methodology using an actual vehicle. Extensions to the methodology allow safe and continuous learning to take place on the road, using a limited instrumentation set. An important new feature is the use of a moderator to set physical limits on the vehicle states. It is shown that the addition of the moderator has little direct effect on the system's ability to learn, and allows learning to take place continuously even when there are unstable controllers present. The study concludes with the results of an experimental trial using vehicle hardware, where the successful synthesis of a semi-active ride controller is demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3