Aerodynamic Drag on Trains in Tunnels Part 2: Prediction and Validation

Author:

Vardy A E1

Affiliation:

1. Civil Engineering Department, University of Dundee, Scotland

Abstract

The principal sources of aerodynamic drag on simple trains in tunnels are (a) surface skin friction and (b) stagnation pressure losses at the nose and tail. On sufficiently long trains, the first of these is dominant. On shorter trains, local losses can be more important. This paper seeks to provide a theoretical basis for predictions of the dependence of drag on the train/tunnel blockage ratio, attention being given to tunnel resistance as well as to train resistance. Hitherto, most predictions have relied on empirical formulae. It is shown that the train skin friction coefficient varies approximately linearly with the blockage ratio, βz. The dependence increases with increasing train roughness. The nose loss coefficient kN is shown to be smaller than 0.1 for reasonably streamlined noses. An approximate relationship between kN and βz is hypothesized. The tail loss coefficient kT is shown to be approximately equal to β2z for poorly streamlined tails. A tail shape coefficient is introduced for use with more streamlined tails.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference19 articles.

1. Compressible and Leaky Trains in Tunnels

2. Schultz M., Sockel H. Pressure transients in short tunnels. Proceedings of Seventh International Symposium on The aerodynamics and ventilation of vehicle tunnels (Ed. Haerter A.), Brighton, 27–29 November 1991, pp. 221–237 (BHR Group, Cranfield).

3. Woods W. A., Pope C. W. Secondary aerodynamic effects in rail tunnels during vehicle entry. Proceedings of Second International Symposium on The aerodynamics and ventilation of vehicle tunnels, Cambridge, 23–25 March 1976, C56–C71 (BHR Group, Cranfield).

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3