Ultra-High Molecular Weight Polyethylene Wear Debris Generatedin Vivoand in Laboratory Tests; the Influence of Counterface Roughness

Author:

Hailey J L1,Ingham E2,Stone M3,Wroblewski B M4,Fisher J1

Affiliation:

1. Department of Mechanical Engineering, University of Leeds

2. Department of Microbiology, University of Leeds

3. Department of Orthopaedic Surgery, Leeds General Infirmary, Leeds

4. Centre for Hip Surgery, Wrightington Hospital, Wigan

Abstract

The objective of this study was to investigate the effect of counterface roughness and lubricant on the morphology of ultra-high molecular weight polyethylene (UHMWPE) wear debris generated in laboratory wear tests, and to compare this with debris isolated from explanted tissue. Laboratory tests used UHMWPE pins sliding against stainless steel counterfaces. Both water and serum lubricants were used in conjunction with rough and smooth counterfaces. The lubricants and tissue from revision hip surgery were processed to digest the proteins and permit filtration. This involved denaturing the proteins with potassium hydroxide (KOH), sedimentation of any remaining proteins, and further digestion of these proteins with chromic acid. All fractions were then passed through a 0.2 μm membrane, and the debris examined using scanning electron microscopy.The laboratory studies showed that the major variable influencing debris morphology was counterface roughness. The rougher counter-faces produced larger numbers of smaller particles, with a size range extending below 1 μm. For smooth counterfaces there were fewer of these small particles, and evidence of larger platelets, greater than 10 μm in diameter. Analysis of the debris from explanted tissues showed a wide variation in the particle size distribution, ranging from below 1 μm up to several millimetres in size. Of major clinical significance in relation to osteolysis and loosening is roughening of the femoral components, which may lead to greater numbers of the sub-micron-sized particles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3