Affiliation:
1. Departamento de Maquinas y Motores Termicos, Universidad Politecnica de Valencia, Spain
Abstract
A mathematical model has been used to evaluate the effect of diesel engine operating conditions on nitric oxide formation and emissions. Although there are several formation pathways during diesel combustion, only the supposed most important one was considered in the present work: the thermal mechanism. The effect of the engine operating conditions was simulated by means of schematical variations of local temperature and fuel–air ratio of the mixture. The evolution of these local variables is described by three characteristic time intervals, which define the timing of the following items: the temperature and pressure peaks; the dilution of burnt products with surrounding air; and the decay of temperature and pressure due to expansion. In addition, the temperature peak was related to the adiabatic flame temperature, which was previously calculated for each mixture condition. A computational parametric study was carried out by varying each of the local mixture parameters and characteristic times, either separately or in combinations. The trends obtained show a qualitative agreement with those obtained by other authors from experimental tests on different diesel engines. The analysis of these trends contributes to a better understanding of the sources of NO diesel emissions and could provide guidelines for cleaner diesel engine design.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献