Piston Temperatures in a Sleeve Valve Oil Engine

Author:

Baker H. Wright1

Affiliation:

1. Lecturer in Engineering, University of Manchester.

Abstract

The paper describes tests on a Mirrlees-Ricardo sleeve valve engine of inches bore, running at speeds up to 1,400 r.p.m. The pistons used were: (1) a simple piston of cast iron; (2) a piston with tapered head section, cast in “L8” alloy; and (3) a heavily ribbed and strutted piston of “Y” alloy. A robust form of thermocouple gear which has been devised is described in the paper, and the probable errors are discussed. The temperatures attained by a number of points in each piston are shown for various conditions. The effect of the sleeve is much less than might be expected. The rates of heat reception by the central and outer portions of the piston head differ considerably owing to the vortex type of combustion chamber used. Values of these rates have been estimated for different loads and speeds. The alloy pistons become warm in about half the time required by the cast iron piston. Piston temperature appears to be a linear function of engine speed, the alloy pistons showing an increase of 42 deg. C. at the centre when the speed was increased from 800 to 1,400 r.p.m. at constant brake mean effective pressure. The temperatures of the lower edges of ribs of moderate depth were only 10–18 deg. C. cooler than the under surface of an unribbed piston. Distortion of the pin seatings due to the expansion of the struts must be very slight. With normal water circulation and a constant temperature of water supply, piston temperatures in this engine are almost independent of the final temperature of the water.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Piston Ring Movement during Blow-by in High-Speed Petrol Engines;Proceedings of the Institution of Mechanical Engineers: Automobile Division;1947-01

2. Piston Crown Temperatures in a Compression-ignition Engine with “Comet” Head;Proceedings of the Institution of Mechanical Engineers;1943-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3