Non-Linear Three-Dimensional Finite Element Analysis of a Cementless Hip Endoprosthesis

Author:

Tensi H M1,Gese H1,Ascherl R2

Affiliation:

1. Institute for Materials and Manufacturing Science, Technical University of Munich, West Germany

2. Institute for Experimental Surgery, Technical University of Munich, West Germany

Abstract

In this finite element study the stresses between a stem component of a cementless hip endoprosthesis (Young modulus of Co—Cr—Mo) and the human femur were calculated for two different loading types. Linear and non-linear models were used to simulate the interface implant bone. Two models, a stem with a porous coated surface over the entire length and a stem with a porous coated surface in the proximal region were compared regarding the load transmission to the femur. An additional calculation of an ‘isoelastic’ stem (Young modulus of cortical bone) was done to show the influence of the stem stiffness. A porous coated surface over the entire length causes principal shear stresses up to 2.75 MPa in the distal-medial region during level walking. The highest compressive stresses were calculated in the proximal-lateral region as 1.5 MPa in cancellous bone. A more physiological load transmission is obtained by limiting the coated area to the proximal region. All stresses in the two models are lower than experimentally evaluated strengths in the interface between implant and bone. A strong infuence of the Young modulus of the stem material on the interface stresses was found. An ‘isoelastic’ stem causes compressive stresses in the proximal-lateral region whose values exceed the experimental strength of cancellous bone.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference18 articles.

1. A survey of finite element analysis in orthopedic biomechanics: The first decade

2. Local stresses and bone adaption around orthopedic implants

3. Hampton S. J., Andriacchi T. P. An analytical representation of the non-linear interface condition in a bone-cement-prosthesis system. Proceedings International Conference on Finite elements in biomechanics (Ed. Simon B. R.), 1980, 193–206 (University of Arizona Press, Tucson, USA).

4. A nonlinear finite element analysis of interface conditions in porous coated hip endoprostheses

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3