Ligament Forces at the Knee during Isometric Quadriceps Contractions

Author:

Zavatsky A B1,O'Connor J J1

Affiliation:

1. Department of Engineering Science, University of Oxford

Abstract

A mathematical model of the knee in the sagittal plane was used to investigate the ligament forces resulting when a posteriorly directed external force, applied to the tibia, resists extension of the knee under increasing isometric quadriceps contractions. The model is based on simple geometric representations of the bones, ligaments and muscles at the knee. An elementary mechanical analysis was used to predict which ligament, the anterior or posterior cruciate, was loaded at a given flexion angle and known line of action of the external force. Ligament force, as a proportion of the external force, was calculated first assuming the ligaments to be represented by single, inextensible lines. Modelling the ligaments as continuous arrays of extensible fibres then showed that tibio-femoral translations and ligament forces increased non-linearly with increasing muscle forces and approached asymptotic values which depended on flexion angle. In most positions of the joint, the calculated asymptotic ligament force values were less than the reported ultimate strength of human ligament, despite quadriceps forces of over three times body weight. The possibility of these asymptotic values of ligament force may explain why, at certain flexion angles, large forces can be developed by the muscles at the knee without ligament rupture.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite Element Models of the Knee Joint;FEM Analysis of the Human Knee Joint;2018

2. Mobility and Stability of the Intact and Replaced Knee;Unicompartmental Arthroplasty with the Oxford Knee;2015-05

3. Influence of Flexing Load Position on the Loading of Cruciate Ligaments at the Knee—A Graphics-Based Analysis;Lecture Notes in Computational Vision and Biomechanics;2015

4. Biomechanics of Off-Center Monoarticular Exercises with Lever Selectorized Equipment;Journal of Applied Biomechanics;2010-02

5. Minimization of the knee shear joint load in leg-extension equipment;Medical Engineering & Physics;2008-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3