A Simplified Approach to Buckling of Plain C Channels under Pure Bending

Author:

Fok W C1,Lu G1,Seah L K1

Affiliation:

1. School of Mechanical and Production Engineering, Nanyang Technological University, Singapore

Abstract

A study of the behaviour of C channel under pure bending applied in such a way as to create compressive stress at the tip of the webs is presented. The analysis encompasses the entire loading history of the beam, from the linear elastic stage, through the buckling of the webs, to the unloading stage after the formation of a plastic hinge. The theoretical predictions were compared to the test results of a series of seven beams. Close correlation was found between theory and experiment over the entire loading range explored, especially for sections with a width-thickness ratio of less than 50.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A machine learning-based crashworthiness optimization for a novel pine cone-inspired multi-cell tubes under bending;Heliyon;2024-09

2. Static and dynamic axial crushing of self-locking multi-cell tubes;International Journal of Impact Engineering;2019-05

3. References;Energy Absorption of Structures and Materials;2003

4. Distortion of U-Channel Sections in Plastic Bending;Journal of Manufacturing Science and Engineering;1999-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3