An Isoelastic Prosthesis Using a New Composite Material

Author:

Taylor D1,Martin C1,Cornelis B2,Jones M E B2

Affiliation:

1. Mechanical Engineering Department, Trinity College, University of Dublin

2. ICI C&P, Runcorn, Cheshire

Abstract

A new particulate composite material has been assessed with regard to the design of an ‘isoelastic’ or ‘modulus matched’ hip prosthesis. Three different prototype designs were assessed, each of which consisted of a femoral component made from the composite material, attached to a metal ball via a metal ‘spike’ insert. The prototypes varied in terms of the detailed shape of the spike, which was modified in the light of photoelastic stress analysis, so as to produce a more acceptable stress distribution to the composite material in the proximal region.Prototypes were made by hand moulding and by transfer moulding; both methods produced defects of various kinds. Simulation tests were conducted using a model of the proximal femur constructed from glass fibre composite, cyclically loaded in a servo-hydraulic testing machine. Though some difficulties were experienced with defective mouldings, especially for the transfer moulding process, a clear improvement was demonstrated for the final (Mark III) design. The fatigue endurance of this prototype was similar to that of conventional metal prostheses tested under similar conditions.Fatigue crack propagation tests were carried out on samples of the composite material to establish its propagation threshold. These results were combined with a finite element stress analysis and fracture mechanics theory to estimate the critical crack length for fatigue in this prosthesis. It was thus possible to specify the maximum safe size of defect that could be tolerated in use.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of CF/PA12 composite femoral stems;Journal of Materials Science: Materials in Medicine;2007-07-10

2. Fatigue testing of a proximal femoral hip component;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2003-02-01

3. The fixation properties of carbon fiber-reinforced liquid crystalline polymer implant in bone: An experimental study in rabbits;Journal of Biomedical Materials Research;2001

4. An Estimation of Fatigue Life for a Carbon Fibre/Poly Ether Ether Ketone Hip Joint Prosthesis;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;1995-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3