Gas Cooling and Humidification: Design of Packed Towers from Small-Scale Tests

Author:

Carey W. F.1,Williamson G. J.2

Affiliation:

1. Engineering Division Manager, I.C.I., Ltd., Alkali Division, Research Department

2. Section Manager, Chemical Engineering Research Section, I.C.I., Ltd., Billingham Division, Stockton-on-Tees

Abstract

On plants in which gases are processed, the gases are often brought into direct contact with water—usually in packed towers. The purpose may be to cool a hot gas, to increase the humidity of a gas, or, in the well-known special case of water-cooling towers, to cool water by contact with atmospheric air. These processes involve simultaneous transfers of sensible heat and water vapour, and existing methods of analysis are complex and laborious, except for the cooling of water, for which Merkel's total-heat method has long been available. Merkel's approximate solution offers the engineer a simple method of working out, for any operating conditions, the amount of heat transferred and the “driving force” available for transferring it. The present paper generalizes the total-heat method and, with a permissible sacrifice in accuracy, preserves the essential simplicity of the water-cooling treatment for gas-cooling and humidification processes. To complete the design of a packed tower, a knowledge is required of the characteristics of the packing. Information obtained in small towers is given for a number of packings, and a worked example shows how to apply the method of treatment, and the packing data presented, to the design of a large plant tower.

Publisher

SAGE Publications

Subject

General Engineering

Reference5 articles.

1. Sherwood T. K. 1937 “Absorption and Extraction”, 1st Edition, p. 40 (McGraw-Hill, New York and London).

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications in humidification and water cooling;Coulson and Richardson's Chemical Engineering;2023

2. Applications in Humidification and Water Cooling;Coulson and Richardson's Chemical Engineering;2018

3. A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling;Renewable and Sustainable Energy Reviews;2017-11

4. Bibliography;Adsorption-Dryers for Divided Solids;2016

5. Leistungsmessungen für verschiedene Konfigurationen;Kühltürme;1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3