Affiliation:
1. Department of Aeronautical and Mechanical Engineering, University of Salford
Abstract
A parallel mechanism is one whose links and joints form two or more serially connected chains which join the fixed base and the end effector The mechanism of a multi-legged walking machine can be considered as a parallel mechanism whose base is not fixed and whose configuration changes during different phases of its gait. This paper presents methods for analysing the mechanics of parallel mechanisms and walking machines using vector and screw algebra Firstly, displacement analysis is covered; this includes general methods for deriving the position vector of any joint in any leg and for calculating the active joint displacements in any leg. Secondly, velocity analysis is covered which tackles the problem of calculating active joint velocities given the velocity, position and the orientation of the body and the positions of the feet. Thirdly, the static analysis of these classes of mechanisms using the principle of virtual work and screw algebra is given. Expressions are derived for the actuator forces and torques required to balance a given end effector (or body) wrench and, in the case of a walking machine, the ground reactions at the feet. Numerical examples are given to demonstrate the application of these methods.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献