A Design Criterion for Maintaining Contact at Plain Bearings

Author:

Earles S. W. E.1,Kilicay O.2

Affiliation:

1. Department of Mechanical Engineering, King's College, University of London

2. Project Engineer, Turkey

Abstract

Clearances at connections of mechanical systems may allow contact to be momentarily lost between the interconnected elements resulting in impact loading, the generation of noise and deterioration of the bearing surfaces. Determining, from a zero-clearance analysis of the mechanism, the reactive force R at a bearing and its rate of change of direction, the criterion is proposed that provided (/ R)/(rad s-1/N) > 1 then contact will be maintained at the bearing. The criterion is shown to apply to a four-bar and a five-bar mechanism having two clearance bearings and subjected to rotary and oscillatory inputs.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chain Drives Modelling Using Kinematic Constraints and Revolute Clearance Joints Formulations;Mathematical Methods in Engineering;2014

2. A methodology for the generation of planar models for multibody chain drives;Multibody System Dynamics;2010-05-11

3. Analysis of a Four-Bar Mechanism with a Radially Compliant Clearance Joint;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1996-05

4. Design Guidelines for Predicting Contact Loss in Revolute Joints of Planar Linkage Mechanisms;Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science;1990-01

5. Contact Loss at Revolute Kinematic Joints: A ‘Ludodynamic’ Theory Tested;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;1985-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3