Affiliation:
1. Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK
Abstract
There are currently no restrictions on the coefficient of friction of tennis courts or strings. The aim of this paper was to determine the effect of friction on tennis ball impacts. Finite element models were used to determine the effect of friction for oblique spinning impacts both between a tennis ball and a rigid surface and between a tennis ball and the string bed of a freely suspended racket. The results showed that during an oblique impact a tennis ball can behave in any of the following ways: first, it can slide, second, it can slide and then ‘overspin’, or, third, it can slide, overspin, and then converge towards rolling. The ball will slide throughout the majority of impacts on the court during play. Therefore, the rebound topspin of the ball will increase with increasing court friction and the horizontal rebound velocity will decrease. The ball will roll off the string bed for the majority of groundstrokes, and the rebound properties will effectively be independent of string bed friction.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献