Development of a cascaded controller for temperature and core growth rate in vapour-phase axial deposition

Author:

Jenkins H E1,Nagurka M L2

Affiliation:

1. Department of Mechanical Engineering, Mercer University, Macon, Georgia, USA

2. Department of Mechanical Engineering, Marquette University, Milwaukee, Wisconsin, USA

Abstract

A cascaded feedback control strategy for an industrial vapour-phase axial deposition (VAD) process is investigated in this paper. VAD is a widely used process in the creation of high-purity glass for optical fibre. In previous work a soot tip surface temperature controller was developed for the VAD process to reduce the effects of core soot temperature variation on deposition geometry, leading to a more stable process. However, it is desired to regulate both the core soot and clad soot such that they deposit at the same axial rate to provide a more uniform product. This paper presents the development of a cascaded controller strategy and process model to couple and regulate the surface temperature and deposition rates of core and clad soot. Simulation studies demonstrate a potential improvement in the uniformity of the core and clad soot geometry over the soot product length.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3