Affiliation:
1. School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK
Abstract
This paper aims to develop understanding of the systems costs associated with the application of flow control systems to civil transport aircraft based on the use of electrically powered synthetic jet actuators (SJAs). The study is based on the development of a low-order mass model using estimated power specific masses of generation, management, distribution, and conversion subsystems; application of existing empirical rules for application of pneumatic boundary layer mixing flow control devices to determine the required fluid power for an A320 case study application; and characterization and optimization of lab-based SJA technology to establish realistic estimates for power conversion efficiency and actuator maximum authority. The peak velocity obtained from a velocity-optimized synthetic jet actuator was 130 m/s, at a corresponding power efficiency of 7 per cent. The highest power efficiency obtained was 14 per cent, corresponding to a peak velocity of 70 m/s. The power specific mass for the overall flow control system considered for the A320 application is estimated to be around 1 kg of system mass per kW of electrical power required, of which around 50 per cent is due to power generation and 30 per cent is due to power conversion (actuation).
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献