Affiliation:
1. Georgia Institute of Technology School of Aerospace Engineering Atlanta, Georgia, USA
Abstract
Next-generation gas turbine and internal combustion engines are required to reduce pollutant emissions significantly and also to be fuel efficient. Accurate prediction of pollutant formation requires proper resolution of the spatio-temporal evolution of the unsteady mixing and combustion processes. Since conventional steady state methods are not able to deal with these features, methodology based on large-eddy simulations (LESs) is becoming a viable choice to study unsteady reacting flows. This paper describes a new LES methodology developed recently that has demonstrated a capability to simulate reacting turbulent flows accurately. A key feature of this new approach is the manner in which small-scale turbulent mixing and combustion processes are simulated. This feature allows proper characterization of the effects of both large-scale convection and small-scale mixing on the scalar processes, thereby providing a more accurate prediction of chemical reaction effects. LESs of high Reynolds number premixed flames in the flamelet regime and in the distributed reaction regime are used to describe the ability of the new subgrid combustion model.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献