Infrared thermometry measurement of temperature distribution in the microwave regeneration of diesel particulate filters

Author:

Kong J1,Henrichsen M2,Shih A J3

Affiliation:

1. North Carolina State University Department of Mechanical and Aerospace Engineering Raleigh, North Carolina, USA

2. Cummins Incorporated Columbus, Indiana, USA

3. University of Michigan Department of Mechanical Engineering Ann Arbor, Michigan, USA

Abstract

Infrared thermometry was applied to study the temperature distribution in microwave heating of diesel particulate filters. In situ non-contact temperature measurement tests were conducted using an integrated four-channel fibre-optic infrared temperature measurement and a microwave heating system. Silica light pipes, which are transparent to electromagnetic fields, were used to collect the infrared radiation from specified locations inside a filter during heating. The temporal and spatial temperature distributions in four microwave-heated diesel particulate filters with different soot and catalyst loading conditions were measured. Experimental results show the non-uniform heating inside filters. Catalyst coating, soot loading, and microwave power level all affect the heating rate and temperature distribution. Using 1 kW of microwave power, heating for 600 s can raise the temperature above 200°C in the soot-laden, catalysed filter.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3