Development of a Flame Propagation Model for Dual-Fuel Partially Premixed Compression Ignition Engines

Author:

Singh S1,Liang L1,Kong S-C1,Reitz R D1

Affiliation:

1. Engine Research Center, The University of Wisconsin, Madison, Wisconsin, USA

Abstract

The limitations of an existing characteristic-time combustion (CTC) model are explored and a new combustion model is developed and applied to simulate combustion in dual-fuel engines in which the premixed natural gas is ignited by the combustion flame initiated by a diesel spray. The model consists of a diesel auto-ignition model and a flame propagation model. A G-equation-based model previously developed to simulate SI engine combustion was incorporated with an auto-ignition model to simulate the flame propagation process in partially premixed environments. The computer code is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion, and emissions processes. Modifications were made to implement the level set G-equation approach and to track the location of the flame as a function of the turbulent flame speed, flame curvature, flow velocity, and the movement of the computational mesh in the engine environment. Good agreement with engine experiments was obtained by using the present model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3