Affiliation:
1. Engine Research Center, The University of Wisconsin, Madison, Wisconsin, USA
Abstract
The limitations of an existing characteristic-time combustion (CTC) model are explored and a new combustion model is developed and applied to simulate combustion in dual-fuel engines in which the premixed natural gas is ignited by the combustion flame initiated by a diesel spray. The model consists of a diesel auto-ignition model and a flame propagation model. A G-equation-based model previously developed to simulate SI engine combustion was incorporated with an auto-ignition model to simulate the flame propagation process in partially premixed environments. The computer code is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion, and emissions processes. Modifications were made to implement the level set G-equation approach and to track the location of the flame as a function of the turbulent flame speed, flame curvature, flow velocity, and the movement of the computational mesh in the engine environment. Good agreement with engine experiments was obtained by using the present model.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献