The effect of air-fuel ratio control strategies on nitrogen compound formation in three-way catalysts

Author:

Defoort M1,Olsen D1,Willson B1

Affiliation:

1. Colorado State University Department of Mechanical Engineering, Engines and Energy Conversion Laboratory Fort Collins, Colorado, USA

Abstract

The ability of three-way catalysts (TWCs) to effectively remove CO and NOx from the exhaust is directly controlled by the air-fuel ratio at which the accompanying engine is operated. In a stoichiometric engine, small variations in the air-fuel ratio have large effects on the catalyst performance. These effects include wide variations in removal efficiencies and catalytic production of ammonia. The effect of the air-fuel ratio on catalysts has been well studied on automotive engines; these studies show the importance of maintaining an air-fuel ratio close to stoichiometric conditions. In automotive systems a ‘dithering’ technique is used in which the air-fuel ratio is modulated to widen the window of control. The effect of dithering on industrial engines has not been studied. A research programme was conducted to evaluate the effects of the air-fuel ratio on the performance of three-way catalysts operating on natural gas-fuelled industrial engines, the test programme aims at optimizing the engine based on the performance of the catalyst. This project has shown that dithering is an effective technique for enhancing the performance of TWCs on industrial engines. These results show that the allowable air-fuel ratio deviations are much larger with dithering and that the production of ammonia is significantly reduced.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3