An improved matching method to solve the diffraction—radiation problem of a ship moving in waves

Author:

Du S X1,Hudson D A1,Price W G1,Temarel P1

Affiliation:

1. University of Southampton School of Engineering Sciences Southampton, UK

Abstract

On the underlying assumption that the disturbance of the far-field velocity potential caused by the motion of a ship is small and may be linearized, an improved matching method is developed. Two arrays of fundamental singularities are placed inside the ship hull, which satisfy the linear free surface condition outside the truncated fluid domain and the far-field radiation condition. The choice of fundamental singularity depends on the problem under investigation (e.g. pulsating, translating or translating and pulsating source). The unknown strength of these singularities and the near-field velocity potential are determined in a coupled manner. It is shown from numerical examples that the present method provides a more efficient and accurate representation of waves in the far field than conventional matching methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determining the characteristics of diffracted sea waves of finite amplitude around a vessel in considerable shallow waters;Eastern-European Journal of Enterprise Technologies;2019-07-22

2. Implicit expressions of static and incident wave pressures over the instantaneous wetted surface of ships;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2009-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3