Unconventional methods for forming nanopatterns

Author:

Stewart M. E.1,Motala M. J.1,Yao Jimin2,Thompson L. B.1,Nuzzo R. G.12

Affiliation:

1. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

2. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Abstract

Nanostructured materials have become an increasingly important theme in research, in no small part due to the potential impacts this science holds for applications in technology, including such notable areas as sensors, medicine, and high-performance integrated circuits. Conventional methods, such as the top-down approaches of projection lithography and scanning beam lithography, have been the primary means for patterning materials at the nanoscale. This article provides an overview of unconventional methods - both top-down and bottom-up approaches - for generating nanoscale patterns in a variety of materials, including methods that can be applied to fragile molecular systems that are difficult to pattern using conventional lithographic techniques. The promise, recent progress, advantages, limitations, and challenges to future development associated with each of these unconventional lithographic techniques will be discussed with consideration given to their potential for use in large-scale manufacturing.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3