Manufacturing performance optimization: The simulation—expert mechanism approach

Author:

Mebrahtu H1,Walker R1,Dionysopoulos T2,Mileham T3

Affiliation:

1. Anglia Ruskin University, Chelmsford, UK

2. SELEX GALILEO, Basildon, UK

3. University of Bath, Bath, UK

Abstract

This paper presents an expert mechanism approach to manufacturing performance optimization using simulation as the base tool. The expert mechanism is integrated to the back end of a manufacturing simulator to interpret manufacturing simulation results, assess performance, and then, consistent with set constraints, to effect changes on controllable variables prior to the next run to improve performance. The expert mechanism has a knowledge base that includes proven operations management performance-enhancing methods. In contrast, existing commercial simulation-optimization methods use meta-heuristics in which a near-optimum value is searched from a population of alternative solutions, which can be inefficient in terms of time and cost. The findings of a real case study from a world-class manufacturing company are discussed to demonstrate the expert mechanism and compare it with one of the widely used commercial simulation optimizers.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference35 articles.

1. Mebrahtu H., Ladbrook J. ‘Simulation and performance improvement process at Ford powertrain operations.’ In Proceedings of the 2008 Industrial simulation conference (ISC'2008), Lyon, France, 9–11 June 2008, pp. 26–132 (Eurosis Publications Ghent, Belgium).

2. Ulgen O. M., Upendram S. S. ‘Productivity simulation in the automotive industry.’ In Proceedings of the SCS 1997 Multiconference, San Diego, California, (Eds, Ades M., Fray R.), (1997) pp. 199–204 (The Society for Computer Simulation International, San Diego, California).

3. Heizer J., Render B., Operations management (New Jersey: Pearson Prentice Hill 2005): Pp. 583–593.

4. Alam F. M., McNaught K. R., Ringrose T. J. ‘Investigating appropriate experimental designs for neural network simulation metamodels.’ In Proceedings of the Operations research simulation study group workshop, Birmingham, UK, (Eds Eldabi T., Robinson S., Taylor S. J. E., Wilcox P. A.) 20–21 March 2002, pp. 45–54 (Operational Research Society, UK).

5. Robinson S., Simulation: The practice of model development and use (Chichester: John Wiley 2004): Pp. 194–195.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3