Affiliation:
1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
Abstract
Preform design in multi-stage forging processes is critical to ensure the production of defect-free parts. Moreover, owing to the geometry and material-flow complexities in forging processes, finding the optimal preform shapes could be difficult and time consuming. This paper proposes an efficient preform design methodology based on geometrical resemblance, which requires several finite element analysis simulation iterations to obtain a good preform shape. The initial and subsequent simulations are carried out by constructing a slightly larger part that geometrically resembles the desired part. Initial finite element analysis simulation of the larger part is performed with a reasonably guessed preform shape, whose forming defects or flash formation would be corrected in subsequent steps. Then a series of intermediate parts of similar shape and between the largest part and the desired part in size are constructed. The undeformed shape corresponding to an intermediate part can be obtained by backwards tracing of material flow from the simulation results of the larger part. This undeformed shape is then taken as the preform shape of the intermediate part. The procedure is repeated until the intermediate part is geometrically close to the desired part, which leads to the preform shape. In order to verify this preform-design methodology, several case studies on forging and extrusion processes have been carried out. The methodology has been shown to be computationally efficient, requiring as few as three finite element iterations to obtain a good preform shape.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献