New algorithm for calibration of instantaneous cutting-force coefficients and radial run-out parameters in flat end milling

Author:

Wan M1,Zhang W H1,Tan G1,Qin G H1

Affiliation:

1. School of Mechatronic Engineering, Northwestern Polytechnical University, Shaanxi, People's Republic of China

Abstract

It is well recognized that the cutter run-out appearing in the milling process will cause an uneven redistribution of the instantaneous uncut chip thickness through the cutter flutes and thereby will generate an irregular distribution of the cutting forces in different tooth periods. This work aims to develop a new approach able to identify the cutter radial run-out and cutting-force coefficients in the flat end milling. It is shown that the total cutting forces can be considered as the sum of a nominal component that is independent of the run-out plus a perturbation component induced by the run-out. Mathematical formulations of both components are developed, accounting for the cutting geometry and the radial run-out parameters. Firstly, to calibrate the cutting-force coefficients, a generic procedure is proposed using the instantaneous value of the nominal component instead of the average value. Secondly, considering the fact that the perturbation component of the cutting force depends non-linearly upon the run-out parameters, the identification of run-out parameters is carried out by solving the linearized equation. In the identification procedure, some key techniques such as the calculation of the immersion boundary at any cutting instant and the reasonable selection of the depth of cut are discussed in detail. Finally, based on simulation and experimental results, the validity of the identification approach is demonstrated.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference24 articles.

1. Budak E., Altintas Y. Flexible milling force model for improved surface error predictions. In Proceedings of the ASME European Joint Conference on Engineering systems design and analysis, Istanbul, Turkey, 1992, PD-Vol. 47–1, pp. 89–94 (American Society of Mechanical Engineers, New York).

2. Modeling and avoidance of static form errors in peripheral milling of plates

3. Numerical Prediction of Static Form Errors in Peripheral Milling of Thin-Walled Workpieces With Irregular Meshes

4. Interrelationships between cutting force variation and tool wear in end-milling

5. CHATTER PREDICTION OF END MILLING IN A VERTICAL MACHINING CENTER

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3