Data mining in manufacturing: Significance analysis of process parameters

Author:

Perzyk M1,Biernacki R,Kozlowski J

Affiliation:

1. Faculty of Production Engineering, Warsaw University of Technology, Warsaw, Poland

Abstract

Determination of the most significant manufacturing process parameters using collected past data can be very helpful in solving important industrial problems, such as the detection of root causes of deteriorating product quality, the selection of the most efficient parameters to control the process, and the prediction of breakdowns of machines, equipment, etc. A methodology of determination of relative significances of process variables and possible interactions between them, based on interrogations of generalized regression models, is proposed and tested. The performance of several types of data mining tool, such as artificial neural networks, support vector machines, regression trees, classification trees, and a naïve Bayesian classifier, is compared. Also, some simple non-parametric statistical methods, based on an analysis of variance (ANOVA) and contingency tables, are evaluated for comparison purposes. The tests were performed using simulated data sets, with assumed hidden relationships, as well as on real data collected in the foundry industry. It was found that the performance of significance and interaction factors obtained from regression models, and, in particular, neural networks, is satisfactory, while the other methods appeared to be less accurate and/or less reliable.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3