Affiliation:
1. Faculty of Production Engineering, Warsaw University of Technology, Warsaw, Poland
Abstract
Determination of the most significant manufacturing process parameters using collected past data can be very helpful in solving important industrial problems, such as the detection of root causes of deteriorating product quality, the selection of the most efficient parameters to control the process, and the prediction of breakdowns of machines, equipment, etc. A methodology of determination of relative significances of process variables and possible interactions between them, based on interrogations of generalized regression models, is proposed and tested. The performance of several types of data mining tool, such as artificial neural networks, support vector machines, regression trees, classification trees, and a naïve Bayesian classifier, is compared. Also, some simple non-parametric statistical methods, based on an analysis of variance (ANOVA) and contingency tables, are evaluated for comparison purposes. The tests were performed using simulated data sets, with assumed hidden relationships, as well as on real data collected in the foundry industry. It was found that the performance of significance and interaction factors obtained from regression models, and, in particular, neural networks, is satisfactory, while the other methods appeared to be less accurate and/or less reliable.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献