Assessment of Thread-Cutting Strategies to Enable Damage-Tolerant Surfaces on an Advanced Ni-Based Aerospace Superalloy

Author:

Marinescu I1,Axinte D1,Herbert C1,McGourlay J2,Withers P J3

Affiliation:

1. Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham, UK

2. Rolls-Royce plc, Derby, UK

3. School of Materials, University of Manchester, Manchester, UK

Abstract

The global aerospace manufacturing industry is continually developing higher strength superalloys to increase engine efficiency. With this comes the challenge of machining these difficult-to-cut materials at high productivity rates and increased surface accuracy requirements. Despite the technical challenges faced, it seems that the research area of thread cutting in aerospace alloys has generally been neglected. This paper addresses reports on a critical assessment of two thread-cutting methods (i.e. tapping and thread milling) applied to a ‘next-generation’ high-temperature Ni-based aerospace superalloy. Carrying out tool life tests revealed tapping (of small thread dimensions) to be particularly difficult to perform due to high and continuous friction incurred at the cutting edge—workpiece interface, which resulted in various surface anomalies (i.e. severe plastic deformation, laps). The optimized thread-milling strategies have, however, shown a significant improvement in tool life and surface integrity of the machined component. To support the understanding of the performances for the investigated thread-making methods, this paper discusses the interrelationship between the specific characteristics of thread tapping and milling sensory signals (cutting forces and torques) with further associations on the quality (metallurgical integrity and residual stresses) of threaded surfaces in notoriously difficult-to-cut Ni-based superalloys.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3