The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches

Author:

Centea D1,Rahnejat H1,Menday M. T.2

Affiliation:

1. University of Bradford Department of Mechanical Engineering UK

2. Ford Engineering Research and Development Centre Power Train Systems Dunton, Essex, UK

Abstract

This paper presents an investigation of the driveline torsional vibration behaviour, referred to as judder, which takes place during the clutch engagement process, particularly on small trucks with diesel engines. A non-linear multibody dynamic model of the clutch mechanism is employed to study the effect of various clutch system and driveline components on the clutch actuation performance. The paper demonstrates that judder is affected by driveline inertial changes, variation in the coefficient of friction, μ, of the friction disc linings with slip speed, v, and the loss of clamp load. The results of the simulations show that various friction materials with different μ- v characteristics produce torsional self-excited vibrations of the driveline. The results also show that loss of clamp load relating to the speed of clutch actuation also contributes to judder. Furthermore, it is shown that the simulation results conform closely to the experimental findings.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference15 articles.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Aspects of the Effects of Dry Friction Discontinuities on the Behaviour of Dynamic Systems;Computation;2024-09-05

2. Investigation of drivetrain dynamics on low-μ ground using the brush model;International Journal of Vehicle Design;2024

3. Multi-body dynamics in vehicle engineering;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2023-06-21

4. Parametric excitation as a cause of clutch judder: theoretical study and experimental validation;Mechanical Systems and Signal Processing;2023-06

5. Study of the Judder Characteristics of Friction Material for an Automobile Clutch and Test Verification;Chinese Journal of Mechanical Engineering;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3