Analytical efficiency comparison between gas turbine and gas turbine hybrid engines for passenger cars

Author:

Cheng W1,Wilson D. G.1,Pfahnl A. C.1

Affiliation:

1. Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, Massachusetts, United States of America

Abstract

The performance and emissions of two alternative types of gas turbine engine for a chosen family vehicle are compared. One engine is a regenerative 71 kW gas turbine; the other is a hybrid power plant composed of a 15 kW gas turbine and a 7 MJ flywheel. These engines would give generally similar vehicle performance to that produced by 71 kW spark ignition and compression ignition engines. (The turbine engines would be lighter and, with a free power turbine, would have a more favourable torque-speed curve (1), giving them some advantages.) Results predict that for long-distance trips the hybrid engine would have a considerably better fuel economy and would produce lower emissions than the piston engines, and that the ‘straight’ gas turbine would be even better. For shorter commuting trips the hybrid would be able to run entirely from energy acquired and stored from house electricity, and it could therefore be the preferred choice for automobiles used primarily for urban driving when environmental factors are taken into account. However, the degradation of remaining energy in flywheel batteries and thermal energy in the regenerator and other engine hot parts between use periods will result in more energy being used than for the straight gas turbine engine using normal liquid fuel. The higher initial cost and greater complexity of the hybrid engine will be additional disadvantages.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fuel Efficiency Evaluation of Gas-Turbine-Engine-Based Hybrid Vehicles;International Journal of Green Energy;2014-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3