Wear mechanisms and transitions in railway wheel steels

Author:

Lewisa R1,Dwyer-Joyce R S1

Affiliation:

1. Sheffield University Department of Mechanical Engineering Mappin Street, Sheffield S1 3JD, UK.

Abstract

The need to improve safety and reduce costs means that new specifications are being imposed on railway wheel wear. These mean that more durable wheel steels are required. In order to develop such materials, a greater understanding is needed of the wear mechanisms and transitions occurring in wheel steels. In this work, twin-disc wear testing has been carried out to study the wear characteristics of R8T railway wheel steel. The results have indicated that, compared with previous wheel steels, R8T offers greater wear resistance. Three wear regimes were identified; mild, severe, and catastrophic. Wear rates were seen to increase steadily initially and then to level off, before increasing rapidly as the severity of the contact conditions increased. This paper is concerned with the form of the data and the reasons for the transitions. Analysis of the contact conditions indicated that the first transition in the wear rate was caused by the change from partial slip to full slip conditions at the disc interface. Temperature calculations for the contact showed that the large increase in wear rates seen at the second wear transition may result from a thermally induced reduction in yield strength and other material properties. This improved understanding will help in progressing towards the aim of eventually attaining a wear modelling methodology reliant on material properties rather than wear constants derived from testing.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3