An analysis of the influence of oil supply conditions on the thermohydrodynamic performance of a single-groove journal bearing

Author:

Costa L1,Miranda A. S.1,Fillon M2,Claro J. C. P.2

Affiliation:

1. University of Minho Department of Mechanical Engineering Guimarães, Portugal

2. Université de Poitiers Laboratoire de Mécanique des Solides, URM CNRS 6610 Futuroscope, France

Abstract

In this work a thermohydrodynamic analysis has been developed in order to investigate the influence of oil supply conditions on the performance of a journal bearing. The supply conditions considered were oil supply temperature, supply pressure, groove length and groove location. To carry out this study, the hydrodynamic pressure distribution inside the bearing has been determined using a mass-conserving cavitation model with realistic supply conditions. The energy equation and the heat conduction equation have been used for the determination of oil film and bush temperature distributions. The agreement observed between theoretical predictions and experimental published data is acceptable. Quantitative information shows that the oil supply conditions affect bearing performance parameters in different ways. Oil flowrate was markedly affected by all supply parameters studied. Power loss, maximum bush temperature and minimum film thickness were mainly dependent on oil supply temperature. The effect of supply pressure on minimum film thickness was dependent on groove location. An axial groove located at 90° to the load line gave rise to more favourable bearing performance characteristics.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3