Multiplatform phased mission reliability modelling for mission planning

Author:

Prescott D R1,Andrews J D1,Downes C G2

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, UK

2. BAE Systems, Warton, Preston, Lancashire, UK

Abstract

Autonomous systems are being increasingly used in many areas. A significant example is unmanned aerial vehicles (UAVs), regularly being called upon to perform tasks in the military theatre. Autonomous systems can work alone or be called upon to work collaboratively towards common mission objectives. In this case it will be necessary to ensure that the decisions enable the progression of the platform objectives and also the overall mission objectives. The motivation behind the work presented in this paper is the need to be able to predict the failure probability of missions performed by a number of autonomous systems working together. Such mission prognoses can assist the mission planning process in autonomous systems when conditions change, with reconfiguration taking place if the probability of mission failure becomes unacceptably high. In a multiplatform phased mission a number of platforms perform their own phased mission that contributes to an overall mission objective. Presented in this paper is a methodology for calculating the phase failure probabilities of a multiplatform phased mission. These probabilities are then used to find the total mission failure probability. Prior to the mission the failure probabilities are used to decide if the original mission structure is acceptable. Once underway, failure probabilities, updated as circumstances change, are used to decide whether a mission should continue. Circumstances can change owing to failures on a platform, changing environmental conditions (weather), or the occurrence of unforeseen external events (emerging threats). This diagnostics information should be used to ensure that the updated failure probabilities calculated take into account the most up-to-date system information possible. Since the speed of decision making and the accuracy of the information used are essential, binary decision diagrams (BDDs) are utilized to form the basis of a fast, accurate quantification process.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solving multi-objective weapon-target assignment considering reliability by improved MOEA/D-AM2M;Neurocomputing;2024-01

2. Reliability Theory and Practice for Unmanned Aerial Vehicles;IEEE Internet of Things Journal;2023-02-15

3. Mission reliability modeling of UAV swarm and its structure optimization based on importance measure;Reliability Engineering & System Safety;2021-11

4. Risk-informed control systems for improved operational performance and decision-making;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2021-08-31

5. Solving “Limited” Task Allocation Problem for UAVs Based on Optimization Algorithms;Wireless Communications and Mobile Computing;2021-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3