Optimizing the sensitivity of the small-disc creep test to damage and test conditions

Author:

Evans M1,Wang D2

Affiliation:

1. Department of Materials Engineering, University of Wales Swansea, Swansea, UK

2. Interdisciplinary Research Centre, University of Wales Swansea, Swansea, UK

Abstract

The small-creep disc test is seen as a promising solution to the problem of sampling from in-service components for remanent life estimation. However, experimental studies have revealed substantial scatter in failure times resulting from variations in test and apparatus geometries. These studies therefore suggest that there exists a set of conditions that both minimizes the scatter and also maximizes the sensitivity of the disc test to the determination of remanent life, so enabling reliable estimates of the remaining life to be made. The objective of this paper is to identify such an optimum. The large scatter present in small-disc test data would make the identification of this optimum problematic and inconclusive using an experimental approach. Instead this paper uses a numerical model of the disc test to predict failure times over a wide range of test conditions. The resulting response surface is then approximated using a polynomial and from this model the optimum set of test conditions is identified. Full verification of the model (and the optimum) can then be more successfully accomplished by carrying out experiments close to the optimum conditions where scatter is the smallest. The model was shown to be capable of predicting actual experimental creep test results. Using this approach, failure times were found to be most sensitive to disc thickness and hole diameter but least sensitive to disc diameter. Under clamping, the optimum test geometry was insensitive to the applied load but sensitive to the level of damage. Without clamping, the optimum geometry was insensitive to both of these. The paper gives optimum conditions for various levels of damage under both conditions.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3