Affiliation:
1. Imperial College of Science and Technology, London
Abstract
The paper describes a procedure, based on a finite element method, for calculating directly the steady-state stress distribution in circumferentially notched bars subjected to creep without the need for obtaining solutions at intermediate time intervals. Good agreement is obtained with relevant approximate plasticity solutions and with numerical calculations which approach the steady-state over a period of time from the initial elastic stress distribution. Also, the procedure is equally applicable to primary, secondary, and tertiary creep, provided the variables of stress and time are separable in the creep law. Results obtained for a range of notch geometries and values of the stress index, n, are reported. It is found for each profile that a region of approximately constant effective stress, σ, independent of n, is obtained which can be used to characterise the overall behaviour of the notch throat region when a steady-state is reached sufficiently early in life. An approximate method for estimating the maximum equivalent steady-state stress across the notch throat is also presented which does not require a computer solution.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献