Affiliation:
1. Department of Civil Engineering, Babol University of Technology, Babol, Iran
2. Department of Engineering Science, Faculty of Engineering, University of Tehran, Tehran, Iran
Abstract
Using a complete set of displacement potential functions, the exact solution of three-dimensional elasticity equations of a simply supported rectangular plates with constant thickness consisting of a transversely isotropic linearly elastic material subjected to an arbitrary static load is presented. The governing partial differential equations for the potential functions are solved through the use of the Fourier method, which results in exponential and trigonometric expression along the plate thickness and the other two lengths respectively. The displacements, stresses, and internal forces are determined through the potential functions at any point of the body. To prove the validity of this approach, the analytical solutions developed in this paper are degenerated for the simpler case of plates containing isotropic material and compared with the existing solution. In addition, the numerical results obtained from this study are compared with those reported in other researches for the isotropic material, where excellent agreement is achieved for both thin and thick plates. The results show that increasing the thickness ratios of the plate causes compressive axial forces and central shear forces inside the plate. Finally, the internal forces and displacement components are calculated numerically for several kinds of transversely isotropic materials with different anisotropies and are compared with a finite element (FE) solution obtained from the ANSYS software, where the high accuracy of the present method is demonstrated. The effects of the material anisotropy are clearly revealed in the numerical results presented.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献